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Turbulent Natural Convection in
Enclosures Using Large-Eddy
Simulation with Localized Heating
from Horizontal Bottom Surface and
Cooling from Vertical Surfaces

Turbulent natural convection of air that happens into inner square cavity with localized
heating from horizontal bottom surface has been numerically investigated. Localized
heating is simulated by a centrally located heat source on the bottom wall, and two values
of the dimensionless heat source lengtlare considered in the present work. Solutions
are obtained for several Rayleigh numbers with Prandtl number Pr = 0.70. The horizontal
top surface is thermally insulated and the vertical surfaces are assumed to be the cold
isothermal surfaces whereas the heat source on the bottom wall is isothermally heated. In
this study, the Navier-Stokes equations are used considering a two-dimensional and
turbulent flow in unsteady state. The Finite Element Method (FEM) with a Galerkin

scheme is utilized for solving the conservation equations. The formulation of conservation
equations is carried out for turbulent flow and the implementation of turbulent model is
made by Large-Eddy Simulation (LES). The distributions of the stream function and of the
temperature are determined as functions of thermal and geometrical parameters. The
average Nusselt number Num is shown to increase with an increase in the Rayleigh
number Ra as well as in the dimensionless heat source Ién@the results of this work

can be applied to the design of electronic components.

Keywords: cavities, finite element, turbulence, natural convection, LES

engineering that can use this geometry. One turbulence model is
implemented here together with the finite element method.
A Large Eddy Simulation (LES) seems as a promising approach
Natural convection in enclosures is an area of interest due tofits the analysis of the high Grashof number turbulence that contains
wide application and great importance in engineering. Transietiiree-dimensional and unsteady characteristics. A direct simulation
natural convection flows occur in many technological and industriaf turbulence gives us more accurate and precise data than
applications. Therefore, it is important to understand the heatperiments; it is essentially unsuitable for high Grashof number
transfer characteristics of natural convection in an enclosure. flows because of computational limitations. It is known that the LES
Along the years, researchers have looked for more flows winables an accurate prediction of turbulence, but spends much less
the objective to approximate the real case found in geophysical ©PU time than the direct simulation.
industrial means. Then, we can define four basic types of boundary In literature, a large number of theoretical and experimental
conditions. They are: the natural convection due to a uniformigivestigations are reported on natural convection in enclosures.
heated wall (with a temperature or a constant heat flux); the natural Natural convection of air in a two-dimensional rectangular
convection induced by a local heat source; the natural convectienclosure with localized heating from below and symmetrical
under multiple heat sources with the same strength and type; anddbeling from the sides was numerically investigated by Aydin and
natural convection conjugated with inner heat-generating conductivang (2000). Localized heating was simulated by a centrally located
body or conductive walls. The boundary conditions mentionddeat source on the bottom wall, and four different values of the
previously are based on a single temperature difference betweendmmensionless heat source length, 1/5, 2/5, 3/5 and 4/5 were
differentially heated walls. Most of the previous studies haveonsidered. Solutions were obtained for Rayleigh number values
addressed natural convection in enclosures due to eitherfram 10 to 16. The average Nusselt number at the heated part of
horizontally or vertically imposed temperature difference. Howevethe lower wall,Nu, was shown to increase with an increase of the
departures from this basic situation are often found in fields such Rayleigh numberRRa, or of the dimensionless heat source length
electronics cooling. The cooling of electronic components is Peng and Davidson (2001) studied the turbulent natural
essential for their reliable performance. convection in a closed enclosure in which vertical lateral walls
The characteristics of fluid flow and heat transfer under thgere maintained at different temperatures. Both the Smagorinsk
multiple temperature differences are more complicated and havegd the dynamic models were applied to the turbulence
practical importance in thermal management and design. simulation. Peng and Davidson (2001) modified the Smagorinsk
In the present work, a two-dimensional numerical simulation imodel by adding the buoyancy term to the turbulent viscosity
a cavity is carried out for a turbulent flow. The turbulence study isgalculation. This model would be called the Smagorinsk model
complex and challenging assumption. There are few works in thgth buoyancy term. The computed results were compared to
literature that deal with natural convection in closed cavities usirgkperimental data and showed a stable thermal stratification under
the turbulence model LES. The motivation to accomplish this woiklow turbulence levelRa= 1.58 x 16).
relies on the fact that there is a great number of problems in Deng et al. (2002) studied numerically a two-dimensional
laminar natural convection in a rectangular enclosure with discrete
heat sources on walls in the unsteady regime. A new combined
temperature scale was suggested to nondimensionalize the
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governing equations of natural convection induced by multiple Ly = Leonard turbulent flux
temperature differences. The Rayleigh numbers used Raerel(® R; = Reynolds sub-grid tensor

to 10 = Deformation tensor rater
It was performed in the work of Oliveira and Menon (2002) a g . )
numerical study of turbulent natural convection in square A = Dimensionless constant
enclosures. The finite volume method together with LES was used. ¢ = Enclosureaspect ratio
The enclosure lateral surfaces were kept to different isothermal Cj = Crossing tensor
temperatures, and the upper and lower surfaces were isolated. Thed = Gravity acceleration, m?s
flow was studied for low Rayleigh numbeRai= 1.58 x 16. Three H = Characteristic dimension of cavity
turbulence LES models were used. | = Length of the heated horizontal lower surface
Ampofo and Karayiannis (2003) conducted an experimental L = Characteristic dimension of cavity
study of low-level turbulence natural convection in an air filled ¢ = Scale lengths and the velocity
vertical square cavity. The cavity was 0.75 m high x 1.5 m deep N = Number of points from the neighborhood
giving rise to a 2D flow. The hot and cold walls of the cavity were N = Unit vector normal to the surface or boundary
isothermal at 50 and 10 °C respectively, that is, a Rayleigh number Nu = Nusselt number
equals to 1.58 x P0 The experiments that were carried out on P = Pressure, Pa
Ampofo work and Karayiannis (2003) were conducted with very Pr = Prandtl number
high accuracy and as such the results formed experimental @ = Velocity, m/s
benchmark data and were useful for validation of computational ' = Distance between two points, m
fluid dynamics codes. Ra = Rayleigh number
Martorell et al. (2003) work dealt with the natural convection S = Source term, Surface
flow and heat transfer from a horizontal plate cooled from above. T = Temperature, °C
Experiments were carried out for rectangular plates having aspect t =Time, s o
ratios betweenp = 0.036 and 0.43 and Rayleigh numbers in the fcpu = CPU processing times, s
range of 290< Ra, < 3.3x10. These values oRa, and @ were u = Velocity in x direction, m/s
selected to the design of printed circuit boards. The results showedV = Velocity iny direction, m/s = =
that such a lowRa, effect could be accounted for in a physically X = Coordinate componentin x direction
consistent manner by adding a constant term to the heat transferY ~ = Coordinate component iny direction
correlation.

In the present work, turbulent natural convection of air that Greek Symbols
happens into inner square cavity with localized heating from a
horizontal bottom surface has been numerically investigated. The 2
objective of the analyses of heat transfer is to investigate the Nusselt ¢

= Kronecker delta
= Large eddy component

number distribution on the vertical walls and heated lower 7; = Reynolds tensor

horizontal surface. Another objective is to verify the effect of height 4 = Sub-grid turbulent flux

variation | of the horizontal heated lower surface on the turbulent vy = Turbulent kinematic viscosity

flow. Six cases are studied numerically. The Rayleigh number Rais ¢ = Dissipation of the turbulent kinetic energy
varied and so is the dimensionless length the heat séiinataere @ = Aspectratio

(1-0)/2 < x < (1+)/2 andx is the coordinate component in the [J = Dimensionless heat source length
direction. For the cases 1, 2 and 3, the dimen&iés fixed in 7= Q = Studied domain

0.4 and the Rayleigh numbdRsiis varied, inRa= 10, 1¢ and 16. o = Fluid density

For the cases 1, 2, and 3, it is used a non-structured mesh of finitelg = Fluid volumetric expansion coefficient
elements with 5,617 triangle elements and 2,908 nodal points. The = General variable

cher cases also used a non-structured mesh qf fini.te elements Withy  — 5aometric mean of distancasfrom neighboring
linear triangle elements. In cases 4, 5, and/& fixed in 7= 0.8. elements to the point whergis calculated

The cases 1 and 4, 2 and 5, 3 and 6 are simulated, respectively, for e . . .

Ra= 10, 10 and 16. The cases 4, 5, and 6 are simulated with one A= F!Iter length X d!rect!on

mesh with 5,828 elements and 3,015 nodes. The turbulence model®2 = Filter length iny direction

used in all cases is the Large-Eddy Simulation (LES) with the vV = Kinematic viscosity
second-order structure-function sub-grid scale moég). (It is ¢ = Stream function
adopted a geometry with an aspect rafio = H/L = 1.0. a = Thermal diffusivity
Comparisons are made with experimental data and numerical results@ = Vorticity

found in Tian and Karyiannis (2000), Oliveira and Menon (2002),

Lankhorst (1991) and Cesini et al. (1999). Subscripts

relative to mean

relative toi directions
relative toj directions
relative tok directions

m
Nomenclature i
|
k
T relative to turbulent
c
h
w
1,

Cyj = Crossing turbulent flux
d. = Distance ¢from the target point

uT = Filtered variable products that describe the turbulent relative to cold

relative to hot
Wall
2,3,4,5 relative to surfaces 1,2,3,4,5

heat transport
yu, = Filtered variable products that describe the turbulent

momentum transport
Li; =Leonard Tensor
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Problem Description and Hypothesis In the Large Eddy Simulation (LES), a variable decomposition

similar to the one in the Reynolds decomposition is performed,
Figure 1 shows the geometry with the domainit will be \yhere the quantity is split as follows:

considered a square cavity. The upper horizontal surfaces

thermally insulated and the vertical surfa&sandS; are assumed P :$+¢- @)

to be the cold isothermal surfaces. The bottom horizontal su$aces

and S are also thermally insulated. Localized heating is simulated _

by a centrally located heat source on the bottom BallThe initial  Where ¢ is the large eddy component agd is the small eddy
condition inQ is: T = 0 withy = = 0. All physical properties of component.

the fluid are constant except the density in the buoyancy term, Figure 2 shows one of the meshes used in the numerical
where it obeys the Boussinesq approximation. It is assumed that i@ulations of the present work.

third dimension of the cavities is large enough so that the flow and

heat transfer are two-dimensional.
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Figure 2. Mesh arrangement for cases 1, 2 and 3.

Figure 1. Cavity geometry The following hypotheses are employed in the present work:
unsteady turbulent regime; incompressible two-dimensional flow;
constant fluid physical properties, except the density in the
buoyancy terms.

Theory of Sub-Grid Scale M odelling The following filtered conservation equations are shown after
applying the filtering operation to Eqgs. (1) to (3). It is done by using
The governing conservation equations are: the volume filter function presented in Krajnovic (1998). The
density is constant.
W &)

ox u _, 5)

o
ou, +(ml'li:_1ap+a{v|:aq+(?_;::|}+ QB(T‘To)dj 2 - {

a  ox,  pox ox | |ox oy 94y, _ 14dp, 9

a  oax  pox ox

J

ou; _ du; = (6)
—+ L+ gBIT-T,)5,,
o }} B(T-T)e,

oT ,OuT _ 0| oT| o 3)
ot dx,  0x;| 0x

]

al+anT :al:aaT:|+S (7)
ot 9% 0% | 09X

where x; are the axial coordinates andy, u; are the velocity

componentsp is the pressurel is the temperaturgy is the fluid In the Egs. (5) to (7)yu and 4T are the filtered variable
density, v is the kinematic viscosity is the gravity acceleratiorf ! !
is the fluid volumetric expansion coefficierd; is the Kronecker
delta, a is the thermal diffusivity, an& the source term. The last
term in Eq. (2) is the Boussinesqg buoyancy term whgres the
reference temperature.

products that describe the turbulent momentum transport and the
heat transport, respectively, between the large and sub-grid scales.
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According to Oliveira and Menon (2002), the produquﬁj and

— I . . The sub-grid models give the following expression for the
uT are split into other terms by including the Leonard tehgor turbulent viscosity:
the Crossing tensoCj, the Reynolds sub-grid tensd®;, the

Leonard turbulent fluxLg;, the Crossing turbulent flug,; and the v; =clq (16)
sub-grid turbulent flux§. The Crossing and Leonard terms,

according to Padilla (2000), can be neglected. After thgnerec is a dimensionless constartandq are the scale lengths
development shown in Oliveira and Menon (2002), the followingnq the velocity, respectively.

conservation equations are obtained:
The parametef is related to the filter size and it is usually used

Lui =0 ® in the two-dimensional case with a rectangular element as:
0%
O auu 5 25 =0 = Q)" 17)
Mﬁuw:_lapw[aw j_afuwg(T_T)J ©)
0 /ij
ot ox p 0% 0%0x ) 0% J whereA; andA, are the filter lengths ir andy directions.
oT ,ouT _ o | aT| 06, (10)
ot ox, ‘ij UTXJ_ a The second-order structure-function sub-grid scale
model (F,)
wherePr is the Prandtl number witlr = v/ Pr. The tensors; and The turbulent viscosity; is calculated as follows:

g that appear in Egs. (9) and (10) are modeled in the forthcoming
topics. v (xA 1= 01040221 Fa(%,0,) (18)

. where C, = 1.4 is the Kolmogorov constant (Kolmogorov, 1941).
Sub-grid scale model The vatiable A is the geor%etric mean of( distar?cels from :
Many sub-grid scale models use the diffusion gradierftéighboring elements to the point whefgs calculated and is given
hypothesis similar to the Boussinesq one that expresses the subBM'd
Reynolds tensor in function of the deformation rate and kinematic

energy. According to Silveira-Neto (1998), the Reynolds tensor is _ N
defined as: A=} Dldi (19)
T, =-2,'S —%d’ij Su (11)  and F,(x,A,t) is the structure function of second order velocities.

According to Kolmogorov (1941) law that establishes that the

wherevy is the turbulent kinematic viscosity; is the Kronecker . e .
structure function of second order velocities is proportional to

delta, andS;; is deformation tensor rate given by: (er)?®, wherer is the distance between two points, the structure
L function can be calculated as:
= _O0u  0du;
oo Y e ged-seal
) d = X+ deé,t)—-ulXt)]” +
) 2 = 2wl dg 0
Substituting S, , from Eq. (12), in Eq. (11) and manipulating A 8"
. ” +lu(x+ d&. ) -0 0l
equations, we have: d

LJi+ 6@1 :-iﬁﬂ, 3%u: L9, LG.+LGJ 19) where y(x+d&,t) and u(x+d@,t) are the velocities at the

ot 0x P 0% axdx; | ox; | T|ox;  9x point i” of the neighboring centroid placed at a distaddeom the

+ gg(f -7 )5 target point,u(x,t) and y(X,t) are the velocities at this point of the
o7 element,N is the number of points from the neighborhobd; the

. L . . time andé the vector on direction.
In a similar way, the energy equation is obtained:

oT ouT o oT 14 The turbulent thermal diffusion is estimated from the turbulent
=T (ata,)— (14)  kinematic viscosity, by assuming:
ot 0x  0X ox;
PI‘T = VT/ a7 = 0.4 (21)
where the turbulent thermal diffusivity; is calculated as:
ar = Wy / PrT (15)

and Pry is the turbulent Prandtl number.
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Initial and boundary conditions Quadrature. The problem solution follows the steps below: (1)
) ) through Eq. (26), the stream function fieids solved; (2) the wall
From this section on, the upper bars that mean average valygsticity is determined in matricial form, according to Silveira-Neto

will be omitted. et al. (2000); (3) the boundary conditions for vorticity are applied:;
Figure 1 pictures the enclosure on which the initial boundamy) the vorticity in the interior is calculated according to Eq. (26);
conditions are as follows: (5) the temperature field is solved through Eq. (10); (6) the local
Nusselt numbemu is obtained using Eq. (28); (7) the time is
(I X,y ,O)= 0, \(X,y ,0)): 0, T(x,y,O))=0 (22) increased with the time stéy and the iteration with unity, and then
it turns to the first step (1). It starts all over again till it reaches the
u=v=0, T=T,=0 (23) stop criterion.
u=v=0 T=T,=1 (24) The local Nusselt numbétu is defined as:

u=v=0, dT/dy=0 (25)
Nu=(0T/an), H/(T,-T.) (28)
The flow field can be described by the stream funagfi@nd the
vorticity o distributions given by: wheren is the unit vector normal to the surface or boundary, where

the local Nusselt numbétu is calculated.
u=9aw/dy,v=-0wdx,a=(0v/dx)-(0u/dy) (26)

whereu_ andv are the velocity cc_)mponent_s Jknapdy directions, Numerical method validation

respectively. Hence, the continuity equation given by Eq. (1) is )
exactly satisfied. Working with dimensionless variables, it is In the present work, a study of the effect of mesh refinement
possible to deal with Rayleigh numbe, Prandtl numbePr and on the average Nusselt numbbiu, calculated on hot lower

the enclosure aspect raflogiven by: surface S, is conducted. The thermal parameters used are:
Rayleigh numbeRa = 1¢f and Prandtl numbePr = 0.71. The
Ra pr{gg(‘rh -T)H?® NZ]z 16 16 and 10°, geometric parameters used are: cavity aspect Aatio 1.0 and

dimensionless length of heated souf@e= 0.5. Five mesh types

are used. Table 1 shows the results obtained in this mesh study.
After this study, we adopted a computational mesh between
meshes D and E.

In order to compare the results with the ones found in literature
and then to validate the computational code in FORTRAN, two
cases are taken from Brito et al. (2002) and Brito et al. (2003). Brito
et al. (2002) and Brito et al. (2003) use the same turbulence model
LES as the one used in the present work. In the first comparison, the
study of the natural turbulent flow in a square enclosure with
Numerical method different temperatures for various Rayleigh numbers is carried out in
rito et al. (2002). The second comparison is made in Brito et al.

Equations (8) to (10) are solved through the finite eleme 003) considering a laminar flow in a rectangular enclosure with an
method (FEM) with linear triangular elements using the GalerkiInternal cylinder 9 9

formulation. The system of equations is solved with the Gauss

Pr=v/ia=0.7,
A=H/L=1.0 27)

where T,, and T, are the temperatures on surfa@sand S, - S;,
respectivelyH is the characteristic dimension of cavity.

Table 1. Numeric results obtained by Nusselt ~ Nup, in the heated lower surface  S..

Mesh| Number of elements NENumber of nodes NQ Nuy,s, | Deviation ofNuysz| tepu[ S ]
A 932 507 10.556 - 90.42
B 1,806 960 11.897 12.70 298.05
C 3,022 1,584 12.73( 7.00 853.70
D 5,384 2,789 13.454 5.69 2,778.80
E 5,981 3,126 13.904 3.34 89,730.20

In the first comparison, it is also used the Large Eddy The second comparison is made in Brito et al. (2003) whose
Simulation (LES). The results in Brito et al. (2002) are compare@sults are compared to the ones in Cesini et al. (1999). Cesini et al.
not only to the experimental and numerical ones in Peng at999) considered a two-dimensional laminar flow. For the
Davidson (2001), and Tian and Karayiannis (2000), but also to themerical simulation made by Cesini et al. (1999), a dimerssien
numerical ones in Lankhorst (1991). In the comparisons realized adopted in such a way that the flow can be considered two-dimensional.
Brito et al. (2002), measures for the center of square cavity f@esini et al. (1999) study a rectangular enclosure where the
dimensionless average velocity are made. The results showed gbodzontal surface has a constant convection heat transfer whereas
concordance with the experimental results. the horizontal lower surface is submitted to isolation. The vertical

surfaces are isothermal having a low temperalyréOn the other
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hand, the cylinder surface has a high temperalyrén the second the values ofNu,. Figures 6 and 9, foRa= 10°, show that the7

comparison, the maximum deviation is 11.88 % with Rayleigncrease reducelNu, on S,. In Figs. 7 and 10, foRa = 10, we

number equals to 3.4 x 1@sing a mesh with 5,790 elements ancbbserve the same behavior found in Figs. 6 and 9 Rtk 10'.

3,011 node points. The minor deviation is 7.53 % to Rayleighihen, we can conclude that the flow become oscillating for

number equals to 3.0 x 10 Ra= 1C® and 7= 0.8, and, as it can be seen in Fig. 10, the heat
transfer rates are larger on all the surfaces, including the upper
horizontal surfac&,.

Results
The main objective of this study is to analyze the influence of

Rayleigh number’s variation and the lengthof the heated )
horizontal lower surface on the flow field. The geometry is chose 0.0

in order to simulate the cooling of the air in cavities with electroni ~" — Casel-Ra=10 s

. = L - 5 > 3
components placed on the lower horizontal surface. A range e n Case2-Ra=10",
Case 3-Ra=10"j

Rayleigh numbers in a low turbulence flow is used. The therm
parameters used ara = 1.0 x 10, 1.0 x 16, and 1.0 x 1®with

Pr = 0.70. The geometry parameters used in the six cases mentio
previously areH = 1.0;L =1.0;T,=1;T.=0andA=H/L=1.0.

In order to model the turbulence, it is used the Large-Edc 300 |
Simulation (LES) with the second-order structure-function sub-gri
scale modelKy). In this work, we also make a study of effect of the 5 |
mesh refinement, aiming to obtain the best time computational ca
It is used a program in FORTRAN, with the Compagq Visual Fortra 100}
v6.6 compilator, for the realization of the numeric simulation. Th
numeric results are obtained using one Intel Pentium Il processor 0.0
800 MHz with 128 MB memory RAM (see Table 1 for CPU 00 01 02
processing timeg:py in seconds). X=wH

500 F

400

1.0

Figures 3 and 4 present the local Nusselt nurhheversus the  Figure 3. Local Nusselt number  Nu on S, Ss and S, surfaces for Ra = 107,
coordinatex for horizontal lower surface$, S andS;. Figures 5-10 10° e 10° with t = 600 t, for cases 1, 2 and 3 ( 7= 0.4).
show the average Nusselt numib&r, versus time for all six cases.
Figures 11-16 show the flow fields and the temperature in terms of
stream function lineg, isothermsT,,, and velocity vectors;. The time
stepAt adopted in this present work is based on Peng and Davidson
work (2001), wherdt = 0.0131t,, t,= H / (g SAt H)*2 In the present 70.0 reereree
work, due to the limitation of the hardware (processor), we adopt o Nu — Case4-Ra=10
time stepAt three times bigger than the value adopted in Peng a  600F 4 — Case 5-Ra=10°
Davidson work (2001). In Figures 5-10, the average time to obtain t o Case 6-Ra=10" il
average quantities is from 400 to &)®= (400 - 600),. Figures 11- 00
16 show the stream functiog with a line spacing equals to 10
(Ay = 10). For the isotherms, we adopt the same line spacing in
Figs. 11-16 At,, = 0.01. The stream functiogr is shown for the last s00b |
interaction,t = 60Q,. The isotherms are calculated at each nodal poil |
considering an average time, thattis; (400-600)t,. The same was 20.0 |
done to the velocity vectots '

400 }

10.0

Figures 3 and 4 show the distribution of local Nusselt numb (,
Nu along all the lower horizontal surfa& Figures 3 and 4 show 0.0 =k o
the results for heated lengttig = 0.4 and 0.8, for the last time 00 o1 02 03 04 05 06 07 08 09 10
(t = 60Qp). We observe that increasing, Nu increases in the X=xH
horizontal lower heated surface. For a fixed value /6fRa
increase does not result in a heat exchange on suBfaée also  Figure 4. Local Nusselt number  Nu on S,, Ss and S surfaces for Ra = 107,
observe a certain symmetry of the heat transfer in the middle ¥Y e 10° with t =600 t, for cases 4, 5 and 6 ( 7= 0.8).
the cavity k = L/2), even for higheRa (Ra= 10°).

Figures 5-10 show the average Nusselt numbBis,
calculated on surfaceS,, S,, S; andS,, versus time for a time
ranget = (400 - 600)}t,. Figures 5, 6, and 7, show that the higher
the Rayleigh number, the higher the convection in all cavity
surfaces studied for fixed values 6f Figures 8, 9 and 10 show
that heat transfer is higher when the Rayleigh number is increased.
In Fig. 10, theNu, values oscillate, due to the effect of the
turbulence inside the cavity. The rates of heat transfer are a little
larger than those presented in Figs. 5, 6, and 7. In Figures 5 to 10,
whereRa = 10, the /7 increase does not considerably influence
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Figure 5. Nup versus t on S, S, Sz and S, with Pr = 0.70, J= 0.4 and
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Figure 6. Nupn versus t on S;, Sy, Sz and S, with Pr = 0.70, J= 0.4 and

t = (400-600) to, for Ra = 108,
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Figure 7. Nupn versus t on S;, Sy, Sz and S, with Pr = 0.70, 7= 0.4 and

t = (400-600) to, for Ra = 10°.
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Figure 8. Nun versus t on S;, S, S; and S, with Pr = 0.70, 7= 0.8 and
t = (400-600) to, for Ra = 10,
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Figure 9. Nun versus t on S;, S,, S; and S, with Pr = 0.70, 7= 0.8 and
t = (400-600) to, for Ra = 10°.
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Figure 10. Nup versus t on S;, Sp, S;z and S, with Pr = 0.70, 7= 0.8 and
t = (400-600) to, for Ra = 10°.
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Figures 11-16 show the effect of Rayleigh number, where
10’ < Ras 10%, and the effect of the dimensionless length of heg;g-ssion
source for/7 = 0.4 and 0.8. Due to the symmetrical boundary
conditions along the vertical walls, the flow and the temperature In this investigation, the results of a numerical study of
fields have a relative symmetry in the middle of the cavity. For tHeuoyancy-induced flow and heat transfer in a two-dimensional
temperature field, we observe that this symmetry is bettéguare enclosure with localized heating from below and
visualized, because the isotherms are obtained through an averag&/Mmetrical cooling from the sides are presented. The main
the time fort = (400 - 600)t,. These same symmetrical boundaryparameters of interest are Rayleigh numbBe and the
conditions in the vertical direction result in two great fluid areas thaimensionless heat source length
symmetrically recirculate. As the flow tends to the oscillating One kind of sub-grid scale model is used: large-eddy simulation
regime forRa= 10, this symmetry is lost. (LES) with the second-order structure-function subgrid scale model

In Figs. 11, 12 and 13, whet& = 0.4, it is observed that the (F2) (more details in Silveira-Neto, 1998). The conservation
internal fluid recirculation is more significant &a increases. For equations are discretized by the Galerkin finite element method with
Ras< 10, thermal plumes are formed over the hot surfaceThe linear triangular elements. o . .
hot fluid, which is in the lower region of the cavity, moves up due to TWo cases are used for validation of the computational domain
buoyant forces. During its traveling to the upper part of the cavitf the present work. As in Brito et al. (2002) and Brito et al. (2003),
the fluid is cooled in vertical lateral walls. It can be noted in Fig. 1'% same turbulence model LES together with the finite element
that with theRa increase toRa < 10%, a region with lower heat Method is used in the present work.
transfer is brought about giving rise to a smaller thermal plume. In !t is observed that increasirigg, the rate of heat transfer also
Fig. 13, forRas 10°, practically all the fluid inside the cavity has alncreases, as expected. For a fixed valuBafthe [/ increase also
stable average temperature between the maximum and minimififreases the heat transfer. = 10" andJ = 0.8, although the
values stated by the boundary conditions. From Figs. 11, 12 and flgw is considered two-dimensional, it is noticed that the flow
the average velocity vectors picture the fluid behavior in the tinfécomes oscillating in time, which is a typical characteristic of a
ranget = (400 - 600),. flow in transition to turbulence.

Figures 14, 15, and 16 show the results fo= 0.8 andRa The average temperatufg and velocity vectorsy, distributions
between 10< Ras< 10°. For Figs. 14, 15 and 16, whefe= 0.8, the aré presented for Rayleigh number’ 19 Ra < 10° and Prandtl
increase of the heated surface len§thmakes the heat transfer NumberPr = 0.70 fort = (400 - 600)t. The results of stream
increase in all surfaces, as seen in the graphidéugfversus the function ¢ distributions are presented fior 600 t,.
timet. The surfaces, has the reduction of th&lu, value calculated
for the range 400 to 6agwith Ra= 10'. For the isotherms, Figs. 15 Acknowledgements
and 16 show few differences. The streamlines in Figures 14, 15 and

16 show two big fluid regions that recircle in opposite directions. ~ The authors thank the financial support from CNPq and CAPES
without which this work would be impossible.
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Figure 11. Case 1 — Streamfunction ¢ for t = 600 to (Ap = 10), average temperature T, (AT, = 0.01) for t = (400-600) to, and velocity vectors for
t = (400-600) to— Ra = 10’ - Pr=0.7 - 0= 0.4.
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Figure 12. Case 2 — Streamfunction  for t = 600 to (Ap = 10), average temperature T, (AT, = 0.01) for t = (400-600) to, and velocity vectors for
t = (400-600) to— Ra = 10°~ Pr = 0.7 - [7= 0.4.

Figure 13. Case 3 — Streamfunction  for t = 600 t, (AY = 10), average temperature Tn, (AT, = 0.01) for t = (400-600) to, and velocity vectors for
t = (400-600) to— Ra = 10°~ Pr = 0.7 — [7= 0.4.
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Figure 14. Case 4 — Streamfunction ( for t = 600 to (Ap = 10), average temperature T, (AT, = 0.01) for t = (400-600) to, and velocity vectors for
t = (400-600) to— Ra = 10"~ Pr = 0.7 — [7= 0.8.
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Figure 15. Case 5 — Streamfunction ¢ for t = 600 to (Ap = 10), average temperature T, (AT, = 0.01) for t = (400-600) to, and velocity vectors for
t = (400-600) to — Ra = 10°~ Pr = 0.7 - [7=0.8.

Figure 16. Case 6 — Streamfunction  for t = 600 to (A = 10), average temperature T, (ATn = 0.01) for t = (400-600) to, and velocity vectors for
t = (400-600) to — Ra = 10°~ Pr = 0.7 - [7=0.8.
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