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Turbulent Natural Convection in 
Enclosures Using Large-Eddy 
Simulation with Localized Heating 
from Horizontal Bottom Surface and 
Cooling from Vertical Surfaces 
Turbulent natural convection of air that happens into inner square cavity with localized 
heating from horizontal bottom surface has been numerically investigated. Localized 
heating is simulated by a centrally located heat source on the bottom wall, and two values 
of the dimensionless heat source length ∈ are considered in the present work. Solutions 
are obtained for several Rayleigh numbers with Prandtl number Pr = 0.70. The horizontal 
top surface is thermally insulated and the vertical surfaces are assumed to be the cold 
isothermal surfaces whereas the heat source on the bottom wall is isothermally heated. In 
this study, the Navier-Stokes equations are used considering a two-dimensional and 
turbulent flow in unsteady state. The Finite Element Method (FEM) with a Galerkin 
scheme is utilized for solving the conservation equations. The formulation of conservation 
equations is carried out for turbulent flow and the implementation of turbulent model is 
made by Large-Eddy Simulation (LES). The distributions of the stream function and of the 
temperature are determined as functions of thermal and geometrical parameters. The 
average Nusselt number Num is shown to increase with an increase in the Rayleigh 
number Ra as well as in the dimensionless heat source length ∈. The results of this work 
can be applied to the design of electronic components. 
Keywords: cavities, finite element, turbulence, natural convection, LES 
 
 
 
 

Introduction 
1Natural convection in enclosures is an area of interest due to its 

wide application and great importance in engineering. Transient 
natural convection flows occur in many technological and industrial 
applications. Therefore, it is important to understand the heat 
transfer characteristics of natural convection in an enclosure. 

Along the years, researchers have looked for more flows with 
the objective to approximate the real case found in geophysical or 
industrial means. Then, we can define four basic types of boundary 
conditions. They are: the natural convection due to a uniformly 
heated wall (with a temperature or a constant heat flux); the natural 
convection induced by a local heat source; the natural convection 
under multiple heat sources with the same strength and type; and the 
natural convection conjugated with inner heat-generating conductive 
body or conductive walls. The boundary conditions mentioned 
previously are based on a single temperature difference between the 
differentially heated walls. Most of the previous studies have 
addressed natural convection in enclosures due to either a 
horizontally or vertically imposed temperature difference. However, 
departures from this basic situation are often found in fields such as 
electronics cooling. The cooling of electronic components is 
essential for their reliable performance. 

The characteristics of fluid flow and heat transfer under the 
multiple temperature differences are more complicated and have a 
practical importance in thermal management and design.  

In the present work, a two-dimensional numerical simulation in 
a cavity is carried out for a turbulent flow. The turbulence study is a 
complex and challenging assumption. There are few works in the 
literature that deal with natural convection in closed cavities using 
the turbulence model LES. The motivation to accomplish this work 
relies on the fact that there is a great number of problems in 
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engineering that can use this geometry. One turbulence model is 
implemented here together with the finite element method. 

A Large Eddy Simulation (LES) seems as a promising approach 
for the analysis of the high Grashof number turbulence that contains 
three-dimensional and unsteady characteristics. A direct simulation 
of turbulence gives us more accurate and precise data than 
experiments; it is essentially unsuitable for high Grashof number 
flows because of computational limitations. It is known that the LES 
enables an accurate prediction of turbulence, but spends much less 
CPU time than the direct simulation. 

In literature, a large number of theoretical and experimental 
investigations are reported on natural convection in enclosures. 

Natural convection of air in a two-dimensional rectangular 
enclosure with localized heating from below and symmetrical 
cooling from the sides was numerically investigated by Aydin and 
Yang (2000). Localized heating was simulated by a centrally located 
heat source on the bottom wall, and four different values of the 
dimensionless heat source length, 1/5, 2/5, 3/5 and 4/5 were 
considered. Solutions were obtained for Rayleigh number values 
from 103 to 106. The average Nusselt number at the heated part of 
the lower wall, Nu, was shown to increase with an increase of the 
Rayleigh number, Ra, or of the dimensionless heat source length ∈. 

Peng and Davidson (2001) studied the turbulent natural 
convection in a closed enclosure in which vertical lateral walls 
were maintained at different temperatures. Both the Smagorinsk 
and the dynamic models were applied to the turbulence 
simulation. Peng and Davidson (2001) modified the Smagorinsk 
model by adding the buoyancy term to the turbulent viscosity 
calculation. This model would be called the Smagorinsk model 
with buoyancy term. The computed results were compared to 
experimental data and showed a stable thermal stratification under 
a low turbulence level (Ra = 1.58 x 109). 

Deng et al. (2002) studied numerically a two-dimensional 
laminar natural convection in a rectangular enclosure with discrete 
heat sources on walls in the unsteady regime. A new combined 
temperature scale was suggested to nondimensionalize the 
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governing equations of natural convection induced by multiple 
temperature differences. The Rayleigh numbers used were Ra = 103 
to 106. 

It was performed in the work of Oliveira and Menon (2002) a 
numerical study of turbulent natural convection in square 
enclosures. The finite volume method together with LES was used. 
The enclosure lateral surfaces were kept to different isothermal 
temperatures, and the upper and lower surfaces were isolated. The 
flow was studied for low Rayleigh numbers Ra = 1.58 x 109. Three 
turbulence LES models were used. 

Ampofo and Karayiannis (2003) conducted an experimental 
study of low-level turbulence natural convection in an air filled 
vertical square cavity. The cavity was 0.75 m high x 1.5 m deep 
giving rise to a 2D flow. The hot and cold walls of the cavity were 
isothermal at 50 and 10 ºC respectively, that is, a Rayleigh number 
equals to 1.58 x 109. The experiments that were carried out on 
Ampofo work and Karayiannis (2003) were conducted with very 
high accuracy and as such the results formed experimental 
benchmark data and were useful for validation of computational 
fluid dynamics codes. 

Martorell et al. (2003) work dealt with the natural convection 
flow and heat transfer from a horizontal plate cooled from above. 
Experiments were carried out for rectangular plates having aspect 
ratios between φ = 0.036 and 0.43 and Rayleigh numbers in the 
range of 290 ≤ Raw ≤ 3.3×105. These values of Raw and φ were 
selected to the design of printed circuit boards. The results showed 
that such a low Raw effect could be accounted for in a physically 
consistent manner by adding a constant term to the heat transfer 
correlation. 

In the present work, turbulent natural convection of air that 
happens into inner square cavity with localized heating from 
horizontal bottom surface has been numerically investigated. The 
objective of the analyses of heat transfer is to investigate the Nusselt 
number distribution on the vertical walls and heated lower 
horizontal surface. Another objective is to verify the effect of height 
variation I of the horizontal heated lower surface on the turbulent 
flow. Six cases are studied numerically. The Rayleigh number Ra is 
varied and so is the dimensionless length the heat source ∈, where 
(1-∈)/2 ≤ x ≤ (1+∈)/2 and x is the coordinate component in the x 
direction. For the cases 1, 2 and 3, the dimension ∈ is fixed in ∈ = 
0.4 and the Rayleigh numbers Ra is varied, in Ra = 107, 108 and 109. 
For the cases 1, 2, and 3, it is used a non-structured mesh of finite 
elements with 5,617 triangle elements and 2,908 nodal points. The 
other cases also used a non-structured mesh of finite elements with 
linear triangle elements. In cases 4, 5, and 6, ∈ is fixed in ∈ = 0.8. 
The cases 1 and 4, 2 and 5, 3 and 6 are simulated, respectively, for 
Ra = 107, 108 and 109. The cases 4, 5, and 6 are simulated with one 
mesh with 5,828 elements and 3,015 nodes. The turbulence model 
used in all cases is the Large-Eddy Simulation (LES) with the 
second-order structure-function sub-grid scale model (F2). It is 
adopted a geometry with an aspect ratio A = H/L = 1.0. 
Comparisons are made with experimental data and numerical results 
found in Tian and Karyiannis (2000), Oliveira and Menon (2002), 
Lankhorst (1991) and Cesini et al. (1999). 

Nomenclature 

Cθ j = Crossing turbulent flux  
di  = Distance di from the target point  

Tuj
 = Filtered variable products that describe the turbulent 

heat transport  

ji uu   =  Filtered variable products that describe the turbulent 

momentum transport 
Li j = Leonard Tensor  

Lθ j = Leonard turbulent flux  
Ri j = Reynolds sub-grid tensor 

"ijS  = Deformation tensor rater 

A = Dimensionless constant 
c = Enclosure aspect ratio 
Cij = Crossing tensor 
g = Gravity acceleration, m/s2 
H = Characteristic dimension of cavity 
I = Length of the heated horizontal lower surface 
L = Characteristic dimension of cavity 
ℓ = Scale lengths and the velocity 
N = Number of points from the neighborhood 
n = Unit vector normal to the surface or boundary 
Nu = Nusselt number 
p = Pressure, Pa 
Pr = Prandtl number 
q = Velocity, m/s 
r = Distance between two points, m 
Ra = Rayleigh number 
S = Source term, Surface 
T = Temperature, ºC 
t = Time, s 
tCPU = CPU processing times, s 
u = Velocity in x direction, m/s 
v = Velocity in y direction, m/s 
x = Coordinate component in x direction 
y = Coordinate component in y direction 
 

Greek Symbols 

δij = Kronecker delta 

ϕ  = Large eddy component 

τ ij = Reynolds tensor 
θj = Sub-grid turbulent flux 
νT = Turbulent kinematic viscosity 
ε = Dissipation of the turbulent kinetic energy ε 
φ = Aspect ratio 
∈ = Dimensionless heat source length 
Ω = Studied domain  
ρ = Fluid density 
β = Fluid volumetric expansion coefficient 
ϕ = General variable 
∆ = Geometric mean of distances di from neighboring 

      elements to the point where vT is calculated 
∆1 = Filter length in x direction 
∆2 = Filter length in y direction 
ν = Kinematic viscosity 
ψ = Stream function 
α = Thermal diffusivity 
ω = Vorticity 
 

Subscripts 

m relative to mean 
i relative to i directions 
j relative to j directions 
k relative to k directions 
T relative to turbulent 
c relative to cold 
h relative to hot 
w Wall  
1,2,3,4,5 relative to surfaces 1,2,3,4,5 
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Problem Description and Hypothesis 

Figure 1 shows the geometry with the domain Ω. It will be 
considered a square cavity. The upper horizontal surface S4 is 
thermally insulated and the vertical surfaces S1 and S3 are assumed 
to be the cold isothermal surfaces. The bottom horizontal surfaces S5 
and S6 are also thermally insulated. Localized heating is simulated 
by a centrally located heat source on the bottom wall, S2. The initial 
condition in Ω is: T = 0 with ψ = ω = 0. All physical properties of 
the fluid are constant except the density in the buoyancy term, 
where it obeys the Boussinesq approximation. It is assumed that the 
third dimension of the cavities is large enough so that the flow and 
heat transfer are two-dimensional. 

 
 

 
 

Figure 1. Cavity geometry 
 
 

Theory of Sub-Grid Scale Modelling 

The governing conservation equations are: 
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where xi are the axial coordinates x and y, ui are the velocity 
components, p is the pressure, T is the temperature, ρ is the fluid 
density, ν is the kinematic viscosity, g is the gravity acceleration, β 
is the fluid volumetric expansion coefficient, δij is the Kronecker 
delta, α is the thermal diffusivity, and S the source term. The last 
term in Eq. (2) is the Boussinesq buoyancy term where T0 is the 
reference temperature. 

In the Large Eddy Simulation (LES), a variable decomposition 
similar to the one in the Reynolds decomposition is performed, 
where the quantity ϕ is split as follows: 

 
'ϕϕϕ +=  (4)  

 
where ϕ  is the large eddy component and 'ϕ  is the small eddy 

component. 
Figure 2 shows one of the meshes used in the numerical 

simulations of the present work. 
 
 

 
Figure 2. Mesh arrangement for cases 1, 2 and 3. 

 
 
 
The following hypotheses are employed in the present work: 

unsteady turbulent regime; incompressible two-dimensional flow; 
constant fluid physical properties, except the density in the 
buoyancy terms. 

The following filtered conservation equations are shown after 
applying the filtering operation to Eqs. (1) to (3). It is done by using 
the volume filter function presented in Krajnovic (1998). The 
density is constant. 
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In the Eqs. (5) to (7), 

jiuu  and Tuj
 are the filtered variable 

products that describe the turbulent momentum transport and the 
heat transport, respectively, between the large and sub-grid scales. 
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According to Oliveira and Menon (2002), the products 
jiuu and 

Tuj
 are split into other terms by including the Leonard tensor Lij, 

the Crossing tensor Cij, the Reynolds sub-grid tensor Rij, the 
Leonard turbulent flux  Lθj, the Crossing turbulent flux Cθ j and the 
sub-grid turbulent flux θj. The Crossing and Leonard terms, 
according to Padilla (2000), can be neglected. After the 
development shown in Oliveira and Menon (2002), the following 
conservation equations are obtained: 

 

0=
∂
∂

i

i

x

u  (8)  

 

( ) ij
i

ij

jj

i

ij

jii TTg
xxx

u

x

p

x

uu

t

u δβ
τ

ν
ρ 0

21 −+
∂
∂

−














∂∂
∂+

∂
∂−=

∂
∂+

∂
∂  (9)  

 

j

j

jjj

j

xx

T

xx

Tu

t

T

∂
∂

+












∂
∂

∂
∂=

∂
∂

+
∂
∂ θ

α  (10)  

 
where Pr is the Prandtl number with α = ν / Pr. The tensors τij and 
θj that appear in Eqs. (9) and (10) are modeled in the forthcoming 
topics. 
 

Sub-grid scale model 

Many sub-grid scale models use the diffusion gradient 
hypothesis similar to the Boussinesq one that expresses the subgrid 
Reynolds tensor in function of the deformation rate and kinematic 
energy. According to Silveira-Neto (1998), the Reynolds tensor is 
defined as: 
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where vT  is the turbulent kinematic viscosity, δij is the Kronecker 
delta, and ijS  is deformation tensor rate given by: 
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Substituting 

ijS , from Eq. (12), in Eq. (11) and manipulating 

equations, we have: 
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In a similar way, the energy equation is obtained: 
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where the turbulent thermal diffusivity αT  is calculated as:  

 
αT = νT  / PrT                                (15) 

 
and PrT  is the turbulent Prandtl number. 

 
The sub-grid models give the following expression for the 

turbulent viscosity vT: 
 

qcT  l =ν                                 (16) 

 
where c is a dimensionless constant, l and q are the scale lengths 
and the velocity, respectively. 
 

The parameter l is related to the filter size and it is usually used 
in the two-dimensional case with a rectangular element as: 
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where ∆1 and ∆2 are the filter lengths in x and y directions. 
 

The second-order structure-function sub-grid scale 
model (F2) 

The turbulent viscosity vT  is calculated as follows: 
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where Ck = 1.4 is the Kolmogorov constant (Kolmogorov, 1941). 
The variable ∆ is the geometric mean of distances di from 
neighboring elements to the point where vT is calculated and is given 
by: 
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 is the structure function of second order velocities. 

 
According to Kolmogorov (1941) law that establishes that the 

structure function of second order velocities is proportional to 
(εr)2/3, where r is the distance between two points, the structure 
function can be calculated as: 
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where ( )tedxu iii ,

rr +  and ( )tedx iii ,
rr +υ  are the velocities at the 

point “i” of the neighboring centroid placed at a distance di from the 
target point, ),( txu

r
and ),( tx

rυ  are the velocities at this point of the 

element, N is the number of points from the neighborhood, t is the 
time and 

ie
r

the vector on i direction. 

 
The turbulent thermal diffusion is estimated from the turbulent 

kinematic viscosity, by assuming: 
 

PrT = νT / αT = 0.4                                (21) 
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Initial and boundary conditions 

From this section on, the upper bars that mean average values 
will be omitted. 

Figure 1 pictures the enclosure on which the initial boundary 
conditions are as follows: 

 
( ) ( ) ( ) 0)0,,,0)0,,,0)0,, === yxTyxvyxu                 (22) 

 
0,0 ==== cTTvu                                   (23) 

1,0 ==== hTTvu                                   (24) 
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The flow field can be described by the stream function ψ and the 

vorticity ω distributions given by: 
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where u and ν  are the velocity components in x and y directions, 
respectively. Hence, the continuity equation given by Eq. (1) is 
exactly satisfied. Working with dimensionless variables, it is 
possible to deal with Rayleigh number Ra, Prandtl number Pr and 
the enclosure aspect ratio A  given by: 

 
( )[ ] 98723 1010,10/Pr                 andvHTTgRa ch =−= β , 

 
Pr = ν /α = 0.7,  
 
A = H/L = 1.0                                                                          (27) 
 

where Th and Tc are the temperatures on surfaces S2 and S1 - S3, 
respectively. H is the characteristic dimension of cavity. 
 

Numerical method 

Equations (8) to (10) are solved through the finite element 
method (FEM) with linear triangular elements using the Galerkin 
formulation. The system of equations is solved with the Gauss 

Quadrature. The problem solution follows the steps below: (1) 
through Eq. (26), the stream function field ψ is solved; (2) the wall 
vorticity is determined in matricial form, according to Silveira-Neto 
et al. (2000); (3) the boundary conditions for vorticity are applied; 
(4) the vorticity in the interior is calculated according to Eq. (26); 
(5) the temperature field is solved through Eq. (10); (6) the local 
Nusselt number Nu is obtained using Eq. (28); (7) the time is 
increased with the time step ∆t and the iteration with unity, and then 
it turns to the first step (1). It starts all over again till it reaches the 
stop criterion. 

 
The local Nusselt number Nu is defined as: 
 

( ) ( )chw TTHnTNu −∂∂=                                (28) 

 
where n is the unit vector normal to the surface or boundary, where 
the local Nusselt number Nu is calculated.  
 

Numerical method validation 

In the present work, a study of the effect of mesh refinement 
on the average Nusselt number Num calculated on hot lower 
surface S2 is conducted. The thermal parameters used are: 
Rayleigh number Ra = 106 and Prandtl number Pr = 0.71. The 
geometric parameters used are: cavity aspect ratio A = 1.0 and 
dimensionless length of heated source ∈ = 0.5. Five mesh types 
are used. Table 1 shows the results obtained in this mesh study. 
After this study, we adopted a computational mesh between 
meshes D and E. 

In order to compare the results with the ones found in literature 
and then to validate the computational code in FORTRAN, two 
cases are taken from Brito et al. (2002) and Brito et al. (2003). Brito 
et al. (2002) and Brito et al. (2003) use the same turbulence model 
LES as the one used in the present work. In the first comparison, the 
study of the natural turbulent flow in a square enclosure with 
different temperatures for various Rayleigh numbers is carried out in 
Brito et al. (2002). The second comparison is made in Brito et al. 
(2003) considering a laminar flow in a rectangular enclosure with an 
internal cylinder.  

 
 
 

Table 1. Numeric results obtained by Nusselt Num in the heated lower surface S2. 

Mesh Number of elements NE Number of nodes NO Num|S2 Deviation of Num|S2 tCPU [ s ] 

A 932 507 10.556 – 90.42 

B 1,806 960 11.897 12.70 298.05 

C 3,022 1,584 12.730 7.00 853.70 

D 5,384 2,789 13.455 5.69 2,778.80 

E 5,981 3,126 13.904 3.34 89,730.20 

 
 
In the first comparison, it is also used the Large Eddy 

Simulation (LES). The results in Brito et al. (2002) are compared 
not only to the experimental and numerical ones in Peng and 
Davidson (2001), and Tian and Karayiannis (2000), but also to the 
numerical ones in Lankhorst (1991). In the comparisons realized in 
Brito et al. (2002), measures for the center of square cavity for 
dimensionless average velocity are made. The results showed good 
concordance with the experimental results. 

The second comparison is made in Brito et al. (2003) whose 
results are compared to the ones in Cesini et al. (1999). Cesini et al. 
(1999) considered a two-dimensional laminar flow. For the 
numerical simulation made by Cesini et al. (1999), a dimension z is 
adopted in such a way that the flow can be considered two-dimensional. 
Cesini et al. (1999) study a rectangular enclosure where the 
horizontal surface has a constant convection heat transfer whereas 
the horizontal lower surface is submitted to isolation. The vertical 
surfaces are isothermal having a low temperature Tc. On the other 
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hand, the cylinder surface has a high temperature Th. In the second 
comparison, the maximum deviation is 11.88 % with Rayleigh 
number equals to 3.4 x 103 using a mesh with 5,790 elements and 
3,011 node points. The minor deviation is 7.53 % to Rayleigh 
number equals to 3.0 x 104. 

 

Results 

The main objective of this study is to analyze the influence of 
Rayleigh number’s variation and the length I of the heated 
horizontal lower surface on the flow field. The geometry is chosen 
in order to simulate the cooling of the air in cavities with electronic 
components placed on the lower horizontal surface. A range of 
Rayleigh numbers in a low turbulence flow is used. The thermal 
parameters used are: Ra = 1.0 x 107, 1.0 x 108, and 1.0 x 109 with  
Pr = 0.70. The geometry parameters used in the six cases mentioned 
previously are: H = 1.0; L = 1.0; Th = 1; Tc = 0 and A = H / L = 1.0. 
In order to model the turbulence, it is used the Large-Eddy 
Simulation (LES) with the second-order structure-function sub-grid 
scale model (F2). In this work, we also make a study of effect of the 
mesh refinement, aiming to obtain the best time computational cost. 
It is used a program in FORTRAN, with the Compaq Visual Fortran 
v6.6 compilator, for the realization of the numeric simulation. The 
numeric results are obtained using one Intel Pentium III processor of 
800 MHz with 128 MB memory RAM (see Table 1 for CPU 
processing times tCPU  in seconds). 

 
Figures 3 and 4 present the local Nusselt number Nu versus the 

coordinate x for horizontal lower surfaces S2, S5 and S6. Figures 5-10 
show the average Nusselt number Num versus time for all six cases. 
Figures 11-16 show the flow fields and the temperature in terms of 
stream function lines ψ, isotherms Tm and velocity vectors ui. The time 
step ∆t adopted in this present work is based on Peng and Davidson 
work (2001), where ∆t = 0.0131 t0, t0 = H / (g β ∆t H)1/2. In the present 
work, due to the limitation of the hardware (processor), we adopt one 
time step ∆t three times bigger than the value adopted in Peng and 
Davidson work (2001). In Figures 5-10, the average time to obtain the 
average quantities is from 400 to 600t0, t = (400 - 600) t0. Figures 11-
16 show the stream function ψ with a line spacing equals to 10  
(∆ψ = 10). For the isotherms, we adopt the same line spacing in all 
Figs. 11-16, ∆tm = 0.01. The stream function ψ is shown for the last 
interaction, t = 600t0. The isotherms are calculated at each nodal point 
considering an average time, that is, t = (400-600) t0. The same was 
done to the velocity vectors ui. 

 
Figures 3 and 4 show the distribution of local Nusselt number 

Nu along all the lower horizontal surface S2. Figures 3 and 4 show 
the results for heated lengths ∈ = 0.4 and 0.8, for the last time  
(t = 600t0). We observe that increasing ∈, Nu increases in the 
horizontal lower heated surface. For a fixed value of ∈, Ra 
increase does not result in a heat exchange on surface S2. We also 
observe a certain symmetry of the heat transfer in the middle of 
the cavity (x = L/2), even for higher Ra (Ra = 109). 

 
Figures 5-10 show the average Nusselt numbers Num 

calculated on surfaces S1, S2, S3 and S4, versus time t for a time 
range t = (400 - 600) t0. Figures 5, 6, and 7, show that the higher 
the Rayleigh number, the higher the convection in all cavity 
surfaces studied for fixed values of ∈. Figures 8, 9 and 10 show 
that heat transfer is higher when the Rayleigh number is increased. 
In Fig. 10, the Num values oscillate, due to the effect of the 
turbulence inside the cavity. The rates of heat transfer are a little 
larger than those presented in Figs. 5, 6, and 7. In Figures 5 to 10, 
where Ra = 107, the ∈ increase does not considerably influence 

the values of Num. Figures 6 and 9, for Ra = 108, show that the ∈ 
increase reduces Num on S2. In Figs. 7 and 10, for Ra = 109, we 
observe the same behavior found in Figs. 6 and 9 with Ra = 108. 
Then, we can conclude that the flow become oscillating for  
Ra = 108 and ∈ = 0.8, and, as it can be seen in Fig. 10, the heat 
transfer rates are larger on all the surfaces, including the upper 
horizontal surface S4. 

 
 
 

 
 

Figure 3. Local Nusselt number Nu on S2, S5 and S6 surfaces for Ra = 107, 
108 e 109 with t = 600 t0 for cases 1, 2 and 3 ( ∈∈∈∈ = 0.4). 

 
 
 
 

 
 

Figure 4. Local Nusselt number Nu on S2, S5 and S6 surfaces for Ra = 107, 
108 e 109 with t = 600 t0 for cases 4, 5 and 6 ( ∈∈∈∈ = 0.8). 
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Figure 5. Num versus t on S1, S2, S3 and S4 with Pr = 0.70, ∈∈∈∈ = 0.4 and  
t = (400-600) t0, for Ra = 107. 

 
 
 

 
 
Figure 6. Num versus t on S1, S2, S3 and S4 with Pr = 0.70, ∈∈∈∈ = 0.4 and  
t = (400-600) t0, for Ra = 108. 

 
 
 

 
 

Figure 7. Num versus t on S1, S2, S3 and S4 with Pr = 0.70, ∈∈∈∈ = 0.4 and  
t = (400-600) t0, for Ra = 109. 

 

 

 
 

Figure 8. Num versus t on S1, S2, S3 and S4 with Pr = 0.70, ∈∈∈∈ = 0.8 and  
t = (400-600) t0, for Ra = 107. 

 
 
 

 
 

Figure 9. Num versus t on S1, S2, S3 and S4 with Pr = 0.70, ∈∈∈∈ = 0.8 and  
t = (400-600) t0, for Ra = 108. 

 
 
 

 
 

Figure 10. Num versus  t on S1, S2, S3 and S4 with Pr = 0.70, ∈∈∈∈ = 0.8 and  
t = (400-600) t0, for Ra = 109.  
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Figures 11-16 show the effect of Rayleigh number, where 
107 ≤  Ra ≤ 109, and the effect of the dimensionless length of heat 
source for ∈ = 0.4 and 0.8. Due to the symmetrical boundary 
conditions along the vertical walls, the flow and the temperature 
fields have a relative symmetry in the middle of the cavity. For the 
temperature field, we observe that this symmetry is better 
visualized, because the isotherms are obtained through an average in 
the time for t = (400 - 600) t0. These same symmetrical boundary 
conditions in the vertical direction result in two great fluid areas that 
symmetrically recirculate. As the flow tends to the oscillating 
regime for Ra = 109, this symmetry is lost. 

In Figs. 11, 12 and 13, where ∈ = 0.4, it is observed that the 
internal fluid recirculation is more significant as Ra increases. For 
Ra ≤ 107, thermal plumes are formed over the hot surface S2. The 
hot fluid, which is in the lower region of the cavity, moves up due to 
buoyant forces. During its traveling to the upper part of the cavity, 
the fluid is cooled in vertical lateral walls. It can be noted in Fig. 12 
that with the Ra increase to Ra ≤ 108, a region with lower heat 
transfer is brought about giving rise to a smaller thermal plume. In 
Fig. 13, for Ra ≤ 109, practically all the fluid inside the cavity has a 
stable average temperature between the maximum and minimum 
values stated by the boundary conditions. From Figs. 11, 12 and 13, 
the average velocity vectors picture the fluid behavior in the time 
range t = (400 - 600) t0. 

Figures 14, 15, and 16 show the results for ∈ = 0.8 and Ra  
between 107 ≤ Ra ≤ 109. For Figs. 14, 15 and 16, where ∈ = 0.8, the 
increase of the heated surface length S2 makes the heat transfer 
increase in all surfaces, as seen in the graphics of Num versus the 
time t. The surface S2 has the reduction of the  Num value calculated 
for the range 400 to 600 t0 with Ra = 107. For the isotherms, Figs. 15 
and 16 show few differences. The streamlines in Figures 14, 15 and 
16 show two big fluid regions that recircle in opposite directions. 

 
 
 

Discussion 

In this investigation, the results of a numerical study of 
buoyancy-induced flow and heat transfer in a two-dimensional 
square enclosure with localized heating from below and 
symmetrical cooling from the sides are presented. The main 
parameters of interest are Rayleigh number Ra and the 
dimensionless heat source length ∈. 

One kind of sub-grid scale model is used: large-eddy simulation 
(LES) with the second-order structure-function subgrid scale model 
(F2) (more details in Silveira-Neto, 1998). The conservation 
equations are discretized by the Galerkin finite element method with 
linear triangular elements.  

Two cases are used for validation of the computational domain 
of the present work. As in Brito et al. (2002) and Brito et al. (2003), 
the same turbulence model LES together with the finite element 
method is used in the present work. 

It is observed that increasing Ra, the rate of heat transfer also 
increases, as expected. For a fixed value of Ra, the ∈ increase also 
increases the heat transfer. For Ra = 109 and ∈ = 0.8, although the 
flow is considered two-dimensional, it is noticed that the flow 
becomes oscillating in time, which is a typical characteristic of a 
flow in transition to turbulence.  

The average temperature Tm and velocity vectors ui distributions 
are presented for Rayleigh number 107 ≤ Ra ≤ 109 and Prandtl 
number Pr = 0.70 for t = (400 - 600) t0. The results of stream 
function ψ distributions are presented for t = 600  t0. 
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Figure 11. Case 1 – Streamfunction ψψψψ for t = 600 t0 (∆∆∆∆ψψψψ = 10), average temperature Tm (∆∆∆∆Tm = 0.01) for t = (400-600) t0, and velocity vectors for  
t = (400-600) t0 – Ra = 107

 – Pr = 0.7 – ∈∈∈∈ = 0.4. 
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Figure 12. Case 2 – Streamfunction ψψψψ for t = 600 t0 (∆∆∆∆ψψψψ = 10), average temperature Tm (∆∆∆∆Tm = 0.01) for t = (400-600) t0, and velocity vectors for  
t = (400-600) t0 – Ra = 108

 – Pr = 0.7 – ∈∈∈∈ = 0.4. 
 
 
 
 
 

 
 
Figure 13. Case 3 – Streamfunction ψψψψ for t = 600 t0 (∆∆∆∆ψψψψ = 10), average temperature Tm (∆∆∆∆Tm = 0.01) for t = (400-600) t0, and velocity vectors for  
t = (400-600) t0 – Ra = 109

 – Pr = 0.7 – ∈∈∈∈ = 0.4. 
 
 
 
 
 

 
 
Figure 14. Case 4 – Streamfunction ψψψψ for t = 600 t0 (∆∆∆∆ψψψψ = 10), average temperature Tm (∆∆∆∆Tm = 0.01) for t = (400-600) t0, and velocity vectors for  
t = (400-600) t0 – Ra = 107

 – Pr = 0.7 – ∈∈∈∈ = 0.8. 
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Figure 15. Case 5 – Streamfunction ψψψψ for t = 600 t0 (∆∆∆∆ψψψψ = 10), average temperature Tm (∆∆∆∆Tm = 0.01) for t = (400-600) t0, and velocity vectors for  
t = (400-600) t0 – Ra = 108

 – Pr = 0.7 – ∈∈∈∈ = 0.8. 
 
 
 
 
 

 
 
Figure 16. Case 6 – Streamfunction ψψψψ for t = 600 t0 (∆∆∆∆ψψψψ = 10), average temperature Tm (∆∆∆∆Tm = 0.01) for t = (400-600) t0, and velocity vectors for  
t = (400-600) t0 – Ra = 109

 – Pr = 0.7 – ∈∈∈∈ = 0.8. 
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